
Predicting Software Evolution with Machine Learning to

Enhance Upfront Software Design

José L. Alvarado1 | Sayed Mohsin Reza2 | Omar Badreddin, PhD.2

University of Puerto Rico, Río Piedras1

University of Texas, El Paso2

Abstract

Methodology

Results

Introduction & Background

Conclusion

This research seeks to employ the use of data analysis to

minimize the amount of maintenance required on the long

run, making it more efficient. Using different tools to extract

software quality data, the bottom line is to gather as much

data from previous versions of the software being evaluated

to be able to outline improvement areas. By optimizing such

areas, the maintenance dependency can be reduced, therefore,

improving the overall longevity of software.

- After software has been selected, acquire as many prior

versions as possible.

- Versions should have six months in between

- Use Intelli J IDEA with a plugin named CodeMR to extract

software quality data.

- Gather the metric variables that we wish to analyze and

perform the analysis using tools, such as: python, excel,

Apple’s numbers, etc.

- Generate different graphs and figures that aid us in

detecting tendencies, specific problematic classes or abnormal

software behavior.

This information allows us to assess the major areas of

improvement within the software so that developers can focus

on working those areas to avoid future extensive maintenance.

A common issue within the tech industry is that people have

a wrong perception on what is the most expensive and time-

consuming stage of the software development process.

Therefore, maintenance is one of the most essential parts of

software engineering. How can we use computer science

skills to make software more efficient and maintenance less

expensive? A possible answer is this research’s route of data

analysis based on historic events of the software.

-Maintenance is the most time consuming and

expensive part of software engineering.

-We can see an increase in the LOC of both projects by

the start of spring 2020 which could be tied to the

Corona Virus Outbreak.

-Increase regarding external classes also brought an

increase in problematic classes.

-After the initial COVID-19 outbreak, one of the

programs was able to improve.

José L. Alvarado

University of Puerto Rico, Río Piedras Campus

Undergraduate Computer Science Student

jose.alvarado14@upr.edu

(787) 210-2842

Contact Information:

Key Takeaways

Set up the

workspace

Extract

Software

Quality Data

Choose Metric

Variables

Conduct

Analysis of

Metric Values

Interpret

Results

Producing less maintenance dependent software can help

companies minimize the amount of time that is invested towards

maintenance. The decrease in maintenance will positively impact

companies financially since it reduces the cost of conducting

maintenance on a regular basis. More so, reducing the need for

maintenance makes the software more trustworthy for the

developer and the client. Nevertheless, the most important

concept for this research, as seen previously, is teamwork.

Without teamwork/collaboration it’s very difficult to generate

such accurate and useful information to impulse improvement.

A common tendency that was observed over time was the number of external classes used in each project

increased significantly. With this, both programs saw an increase in their respective average RFC. This is basically

the capacity for a class to be called upon or make different calls. This entails a very noticeable increase on the

software’s complexity.

Fig 1. Research Methodology Flow Chart

As we analyze different versions of both repositories, we can notice interesting observations such as the increase in complexity for

both repositories from January to March. This might be due to the Corona Virus pandemic which affected the ability of

professionals to conduct their regular maintenance procedures

Fig 2. Sky Walking External Class Count vs Avg RFC

- RFC is influenced heavily by the number of external

classes where their graphs have a parallel behavior.

- As the external class count increase, the RFC increases

as well and when one decreases, so does the other.

Fig 4. Signal Android External Class Count vs Avg RFC

- In Figure 4 we can corroborate the RFC keeps

growing in relation to the increase in external classes.

- Although not as drastic as for problematic classes in

Figure 5, we can see how there is a change in slope for

RFC at the same time external classes increase.

Fig 3. Sky Walking External Class Count vs Problematic

Class count

- In figure 3 we can see how there is a dramatic increase

on external classes and an increase on the number of

problematic classes.

- There is a decrease for later versions which looks like

some degree of maintenance was able to resume after a

few months of the original corona virus outbreak.

Fig 5. Signal Android External Class Count vs Avg RFC

- Problematic classes increases directly proportional

to the increase on the external classes count.

- There is no drop with the current versions which

presents considerable issues with software maintenance

with Signal Android.

