
MACHINE LEARNING ENABLED SOFTWARE DESIGN
Analyzing Software Evolution Patterns

Montserrat Molina, Sayed Reza, Omar Badreddin
Computer Science Student, The University of Texas at El Paso

INTRODUCTION & BACKGROUND

RESEARCH APPROACH & METHODS

RESULTS & ANALYSIS
ABSTRACT

CONTACT
Montserrat Molina
The University of Texas at El Paso
Email: mgmolina3@miners.utep.edu
Phone: 915-309-0964

Background
Software code quality tends to decline over
time. This is particularly evident as the
software code is subject to significant
modifications to fix bugs and address new
requirements.

Problem
Software engineers must design software
early in the lifecycle with little knowledge on
how the code is likely to evolve in the
future.

Approach
Our project aims at using machine learning
techniques to predict software evolution.
We use the prediction to enhance the initial
software design.

Study Design
We extract code quality data from two code
repositories and their histories over a three-
year period. We feed the data to a machine
learning algorithm to predict software
evolution.

Results
Our study shows that software code
repositories tend to evolve in a similar
fashion, particularly pertaining to code size
and complexity.

The study also uncovers unique evolution
patterns. In one repository, we observed
significant increase in coupling between
objects and increase in class count. In
another repository, we observed a
significant increase in the number of
methods per class, the weighted method
count, and in complexity.

• Hadoop in Fig. 2 has shown a similar pattern with complexity, class count, weighted method count, and
number of methods. Hadoop seems to struggle with size as seen in Fig. 1, it has a high number of
methods and weighted method count per class in each version.

• Selenium in Fig. 4 showed a pattern with complexity, class count, class coupling and coupling between
objects. Selenium does not have problems with size nor high complexity, rather, as seen in Fig. 3, it
struggles with high class coupling and high class coupling between objects throughout its evolution.

• Overall, Hadoop and Selenium have been maintained very well, showing a relatively small number of 
classes with high complexity compared to the total number of classes. (Fig. 2 & Fig. 4)

• Two different software repositories were
selected for the purposes of this research:
Hadoop and Selenium.

• For each software, five different versions
were selected for a span of three years (with
about 6 months between each version).

• CodeMR analysis tool was used to extract
software quality data for each version.

• Data metrics were selected for each
software to compare how the software has
evolved over time: class complexity, class
coupling, coupling between objects, lines of
code, number of methods per class, number of
classes in the repository, and the weighted
method count.

• Graphs and charts were drawn up on an
Excel Spreadsheet to allow for a visualization
of the collected data.

• Machine Learning algorithm (Univariate
Regression) was applied to predict future
evolution.

CONCLUSIONS

• One metric directly affects the other, we see how the maintenance of
one metric can come at the cost of another metric.

• Each software showed similar patterns as they both undergo
maintenance efforts and degradation periods.

• Hadoop’s engineers tend to create large number of methods per
class, causing the software quality to degrade over the study period.

• In Selenium, we observe an increase in Class Count that has led
to higher Class Coupling and higher Coupling Between Objects.

• We can conclude that size maintenance can sometimes come at the
cost of higher coupling while software growth can come at the cost
of an increase in size complexity and method count.

• Software maintenance is usually the most
expensive and time-consuming activity in
the software development process.

• Software maintenance involves currently
updating the software and rolling out new
changes, which can impact the software
negatively or positively.

• There is no optimum design that software
engineers can follow to ensure the best
quality software maintenance to reduce time
and costs.

• If we can analyze the evolution of a current
software and the changes it undergoes, we
can better understand how the software
patterns look in terms of maintenance and
predict software evolution.

• If a software integrates a new feature, it is
possible it can be at the cost of higher
complexity and lines of code.

• If a software is being constantly
maintained, it is likely to reflect lower
complexity and lines of code.

Fig. 1: Number of classes in Hadoop with High Number of Methods 
(NOM), High Weighted Method Count (WMC), and High Complexity. 

+ Machine Learning Algorithm prediction.

Fig. 3: Number of classes in Selenium with High Coupling, High 
Coupling Between Objects (CBO), and High Complexity. + Machine 

Learning Algorithm prediction.

Fig. 2: Hadoop class count and number of classes with 
Low Complexity, Low Weighted Method Count (WMC), 

and Low Number of Methods (NOM).

Fig. 4: Selenium class count and number of classes with 
Low Complexity, Low Coupling, and Low Coupling 

Between Objects (CBO). 

ACKNOWLEDGEMENTS

This material is based upon
work supported by the National
Science Foundation under Grant
No. 2034030. Any opinions,
findings, and conclusions or
recommendations expressed in
this material are those of the
authors and do not necessarily
reflect the views of the National
Science Foundation.


