
Recursion

Sayed Reza
PhD Candidate
Computer Science
Website: https://smreza.com/

What is Recursion?

• Recursion is fundamental technique in
Computer Science and can be applied to
tasks that are repetitive.

• Recursion is a function that calls itself.

• Recursion is generally used when a problem
can be divided into smaller part.

Function

Which tasks we can apply recursion?

Timer

1. Repetitive Tasks

Robot Put Away PlatesMathematical Factorial

2. Divided into smaller part

Any Ideas from students?

Timer – How can we divided into subtask?

Timer

29 28 … 20 19 18 …. 1 0

Pseudocode:
1. Print (second -1) after each second passes
2. Stop the timer when it reaches 0

Second-1 Second-1Second-1 Second-1

2
. Sto

p
/B

a
se C

a
se

1. Recursive Case

When creating a recursive solution, there are a few things we want to keep in mind:

1. We need to break the problem into smaller pieces of itself

2. We need to define a “base case” to stop at

3. The smaller problems we break down into need to eventually reach the
base case

Recursive Solutions

How Recursion Function is Developed

Sample Recursion code Run: https://onlinegdb.com/LV76WYXxc

Base Case
Recursion ends and returns a value/exit

Recursive Case
Function call itself

https://onlinegdb.com/LV76WYXxc

def func(n):

if n == 0:

return 0

print(n)

return func(n - 1)

Base case

Recursive case

Recursion Terminology

Task: Find func(5)

func(5)

Print(5)
return func (4)

func(4)

Print(4)
return func (3)

func(3)

Print(3)
return func (2)

func(2)

Print(2)
return func (1)

func(1)

Print(1)
return func (0)

func(0)

return 0

def func(n):

if n == 0:

return 0

print (n)

return func (n + 1)

Find func(5)

We have a base case and a recursive case.

What's wrong?

Recursion Issue

def func(n):

if n == 0:

return 0

print (n)

return func (n + 1)

Find func(5)

Recursion Issue

func(5)

Print(5)
return func (6)

func(6)

Print(6)
return func (7)

func(7)

Print(7)
return func (8)

func(8)

Print(8)
return func (9)

func(1000)

Print(1000)
return func (1001)

...

def func(n):

if n == 0:

return 0

print (n)

return func (n + 1)

Find func(5)

Recursion Issue

Important when you code

1. Make Sure base case is called at some point
2. Try to avoid forever loop
3. Recursive cases will end up with base case at some point

def func(n):

if n == 0:

return 0

print (n)

return func (n - 1)

Find func(5)

Which tasks we can apply recursion?

Timer Robot Put Away PlatesMathematical Factorial

• Does anyone know the value of 9! ?

• 362,880

• Does anyone know the value of 10! ?

• How did you know?

Mathematical Factorial

Mathematical Factorial

9! = 9×8×7×6×5×4×3×2×1

10! = 10 × 9×8×7×6×5×4×3×2×1

10! = 10 × 9!

n! = n× (n - 1)!

That's a recursive definition!

Mathematical Factorial

n! = n× (n - 1)!Step 1:

def fact(n):
return n * fact(n - 1)

Step 2:

fact(3)
3 * fact(2)
3 * 2 * fact(1)
3 * 2 * 1 * fact(0)
...

Step 3:

Mathematical Factorial

What did we do wrong?

Missing base case for recursion

def fact(n):

return n*fact(n-1)

Find fact(10)

def fact(n):

if n == 1:

return 1

return n*fact(n-1)

Find fact(10)

Which tasks we can apply recursion?

Timer Robot Put Away PlatesMathematical Factorial

Robot Put Away Recursion Code

def putAwayPlate(numberPlates):

if numberPlates == 0:

print (“Finished”)

return 0;

movePlate()

putAwayPlate(numberPlates - 1)
Robot Put Away Plates

Summary

• Recursion is fundamental technique in
Computer Science and can be applied to tasks
that are repetitive.

• Recursion is a function that calls itself.

• Recursion has 2 cases

• Recursive cases

• Stop/base case

• Make Sure base case is called at some point

• Try to avoid forever loop

Function

Any Questions

Timer Robot Put Away PlatesMathematical Factorial

