G-Issue: Analyzing Lifetime and Evolution of Issue-related
Artifacts from Open Source Repositories

Sayed Mohsin Reza
University of Texas at El Paso
El Paso, Texas, USA
sreza3@miners.utep.edu

ABSTRACT

Software developers or contributors report issues related to bugs,
errors, and missing documentation during community-based soft-
ware development. These issues are treated as feedback and are
crucial to enhancing software documentation, quality and fixing
bugs. If software issues are not being addressed with a correct de-
veloper, software quality degrades and is unable to use in the end.
Hence, it is essential to analyze the software issue-related artifacts
to understand the behavior of the software. This paper investigates
the performance of the proposed issue-related artifacts mining tool
G-Issue with other state-of-the-art tools. We also investigate issue
lifetime and evolution of issues over time among well-known and
maintained repositories. The results show that G-Issue is faster in
mining issue-related artifacts but takes more memory than general
Python API during mining issue mining. The results depict that we
can prioritize issues based on issue lifetime and evolution. Such re-
sults may provide a new horizon about issues that can help in issue
management, developer assignment, and quality management.
G-Issue URL: https://www.smreza.com/projects/modelmine/issues.

php

CCS CONCEPTS

- software and its engineering — Maintaining software.

KEYWORDS

Mining Software Issues, Issue-related Artifact Mining, Software
Engineering, Software Maintenance

ACM Reference Format:

Sayed Mohsin Reza, Saif Uddin Mahmud, and Omar Badreddin. 2022. G-
Issue: Analyzing Lifetime and Evolution of Issue-related Artifacts from
Open Source Repositories. In IEEE/ACM 37th International Conference on
Automated Software Engineering (ASE ’22), October 10-14, 2022, Oakland
Center, Michigan, United States. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/XXXXX

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °22, October 10-14, 2022, Oakland Center, Michigan, United States

© 2022 Copyright held by the owner/author(s).

ACM ISBN XXXXX.

https://doi.org/10.1145/XXXXX

Saif Uddin Mahmud
University of Texas at El Paso
El Paso, Texas, USA
smahmud4@miners.utep.edu

Omar Badreddin
University of Texas at El Paso
El Paso, Texas, USA
obbadreddin@utep.edu

1 INTRODUCTION

Software development becomes distributed nowadays, and devel-
opers from anywhere can contribute towards the software develop-
ment [1]. Towards this development, some software manages tech-
nical artifacts like commits, issues, and milestones which enables a
social community that attracts many developers to work on and
deliver projects within timeline [2, 29]. BitBucket [10], GitHub[5],
GitLab [23] is the leader in distributed version control and source
code management (SCM), which combines the ability to develop,
secure, and operate software in a single application.

Source code management software is growing in features that
allow faster development through bug identification, error report-
ing, or other issues. One of the features is an issue tracking system,
often used to get user feedback related to bugs, errors, and prob-
lems. Also, the service allows the developers to assign an issue to a
developer [19] and automatic labeling issues to prioritize it better
[17]. In summary, this tracking system enhances the code quality
and increases the software lifetime.

Software maintenance is a costly and largely unpredictable human-
intensive activity in the software development life cycle. High main-
tenance efforts and expertise often eclipse the cost and sometimes
become the reason for unsustainable software [15]. Moreover, if
issues are not well managed during this maintenance, the software
becomes smelly and may introduce bugs, and obsolete in the long
run [24]. To solve such issues, developers worldwide may provide
feedback on an issue and can contribute to fixing that. Therefore,
source code management with issue tracking can provide collabo-
rative pathways to manage software, reduce software failures and
improve software quality.

Very few research efforts have been conducted on mining [16, 28],
analyzing [6] and visualizing [9] issues in open source communities.
These efforts include issue title prediction [33], automatic issue
labeling [30, 31] and sentiment analysis of issues [7, 14]. However,
there is a missing effort on mining issues faster, analyzing issue
timelines, and evolving issues over time.

In this paper, we investigate the performance of issue mining
of an in-house developed tool, called G-Issue, and compare perfor-
mance with other state-of-the-art tools [12, 27] in terms of execu-
tion time and memory usage. Moreover, we investigate the average
issue lifetime in popular open source repositories and analyze the
evolution of issues over time among repositories to see the behavior
of each repository.

This study is structured as follows: Section 2 discusses the related
research works on issue tracking and its management; Section 3
discusses the study design with research questions. Section 4 shows
results against each research questions and discuss elaborately and
finally we conclude in Section 5.
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2 RELATED WORK

Software development through source code management and its as-
sociated artifacts are available on an open-source platform. Several
studies have been conducted research on such artifacts from differ-
ent perspective such as sentiment analysis [16], label prediction[18],
issue management [4] & mining [33].

2.1 Issue-related Artifact Mining

Software artifact mining has improved software quality, bug iden-
tification, and network analysis. Several studies have uncovered
interesting and actionable artifacts from software data. Several
mining tools have emerged to enable such research, and discov-
ery [22, 25, 27]. For example, PyDriller, a python framework for
mining software repositories, can extract recent information from
open source repositories such as commits, developer information,
modifications, differences, and source codes [27]. However, the tool
has no feature to extract issues. MetricMiner is another application
suitable for mining software repositories for metrics calculation,
data extraction, and statistical inference [26]. These tools focus on
extracting data primarily from either code or commit history, with
limited support for mining issue-related artifacts.

2.2 Issue-related Artifact Analysis

Issue-related artifact analysis has gained popularity last few years.
Several studies have researched on issue lifetime [18, 21], how
long it will take to close an issue, and empirical studies on the
life expectancy of issues based on labels. Kikas et al. conducted
research on 4000 repositories to find temporal dynamics of issues
in GitHub [18]. The study found that the projects with a shorter
observation time tend to have higher volumes of open issues. In
addition, Kikas proposed a prediction model trained from static,
dynamic, and contextual features to predict the lifetime of an issue.
The results showed that the average issue lifetime for community-
created issues is 39 days, but the team-created issues are 5.9 days.

2.3 Issue-related Artifact Visualization

Visualization techniques have been popular in textual & network
data. As issue-related artifact has textual(issue title, body) and
network (issue assignee, label) data, several research have been
conducted on issue-related artifact visualization [4, 19]. Liao et al.
applied the visualization technique on issue-related behavior by
analyzing seven projects with 98,074 issues in total [19] and pro-
posed an SRF to measure the importance of user behaviors. The
results found that issue-related user behaviors are critical, and not
all issues that are assigned labels could be closed rapidly. Another
empirical research by Bissyand et al. investigated the adoption of an
issue tracker based on the projects, developers, and type of issues
[4]. The results found that small-sized team projects are less likely
to have issues and visualized the top 10 labels in GitHub, where
bug and feature requests are at the top with 18.36% and 10.29%,
respectively.

2.4 Issue-related Other Research

There are other research on issues conducted in aspects of sen-
timent [7, 16, 32], bug and issue-tracker analysis [24]. Jurado et
al. conducted a study on 10,829 issues from 9 well-known & open
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source repositories to do sentiment analysis [16]. The study pro-
posed a new technique to identify the underlying sentiments in the
text found in issues and their comments. Results showed that issues’
titles and text leave underlying sentiments, which can be used to an-
alyze the development process. Another research on issues-related
artifacts is automatic labeling of GitHub Issues [3, 11, 17]. Kallis et
al. introduced a tool called Ticket Tagger, which is developed using
Node.js and de-facto server-side JavaScript and uses machine learn-
ing approaches on issue artifacts to label an issue automatically
[17].

In summary, there is insufficient research on issue-related arti-
fact mining, analysis, and visualization through a web application.
Hence, this scope study is unique in terms of faster mining without
any hassle of processing, analyzing, and visualizing the artifacts.

3 STUDY DESIGN

The study aims to analyze issue-related artifacts from open source
repositories with the purpose of mining, pre-processing, and vi-
sualizing the issues which can be effectively used in practice. The
perspective is of both researchers and practitioners who are in-
terested in analyzing the issues in terms of issue expectancy and
evolution of issues. Specifically, we aim to address the following
research question:

3.1 Research Questions

This section discusses the research questions we used and how we
plan to answer these research questions. We are motivated to find
the answer to the following research questions:

RQ1. What is the performance of the G-Issue tool compared to
the state-of-the-art tools in mining issue-related artifacts?

The RQ focuses on the performance evaluation of G-Issue and
is motivated by the fact that issue-related artifacts are crucial in
repositories compared to code itself and tend to be significantly
larger in terms of text size and issue comments. This often translates
to complexity in identifying and extracting issue-related artifacts.
For reference, we compare ModelMine with state of the art tools
Python API [16], GHTorrent [12, 13], PyDriller [27], G-Repo [25]
for mining issues from GitHub. To answer this research question,
we choose three individual tasks that are common for the majority
of mining research with available support in mining tools. The
tasks are as follows:

(1) Task 1 (Size related): Retrieve the list of 1000 issues that
include at least one open state issue, and the total number
of issues is more than 1000.

(2) Task 2 (Time-related): Retrieve the list of 1000 issues that
include at least one open state issue and created before Jan-
uary 2019.

(3) Task 3 (State related): Retrieve the list of 1000 issues now
in a closed state.

These tasks are implemented using the following frameworks/tools:
(1) G-Issue, (2) Python API, (3) GHTorrent, (4) PyDriller, and (5)
G-Repo. To compare the tools, we use two performance metrics:
(1) Execution Time and (2) Max Memory (MM). Such performance
metrics are used in evaluating different software artifacts mining
tools [8, 22, 27]. The evaluation checks how fast and how much
memory the tool takes to mine issue-related artifacts.
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Figure 1: Architecture of G-Issue Tool

RQ2. What is the average issue lifetime among different reposi-
tories?

This RQ describes the analysis of the time it takes to solve an
issue for each repository in our dataset on average. After collecting
issues using G-Issue, we will find closed state issues, its created
time, and when it is closed. We reveal the average issue lifetime
among different repositories based on those data.

RQ3. What is the evolution of issues over time among reposito-
ries?

This RQ shows the evolution of open and closed state issues
among repositories. To prepare the results, we need to extract
yearly issues and their state from all the issues. We also plan to
show Kernel Density Estimation (KDE) as a part of the probability
density function on our ongoing issue creating time variables.

With these research questions, we aim to provide a more pro-
found knowledge of the capabilities of G-Issue in mining and anal-
ysis of issue-related artifacts. The following subsections report the
architecture of G-Issue and the steps that we conducted to collect
the dataset.

3.2 G-Issue Architecture

In this section, we discuss the architecture of the issue mining
tool G-Issue that we built in-house lab setup and hosted on the
online platform. The tool adopts several approaches (indexing, pag-
ing, query reduction, querying, data representation, and results
ranking) to mine issue-related artifacts of repositories from open
source repositories. The overall architecture of the G-Issue tool is
visualized in Figure 1.

In G-Issue, we provide a user interface with the mining capabil-
ity to request GitHub for issue-related artifacts and process that
data. This service is under the parent tool called ModelMine [22].

This tool provides a simple, extensible user interface to mine issue-
related artifacts of repositories. It has a different way of searching
to ensure the possibility of different mining types of datasets for
MSR research.
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Figure 2: Search & result screenshot of G-Issue Tool

Software issues have multiple types of artifacts, including state,
milestone, assignee, and G-Issue, allowing researchers to investigate
specific state-based issue searches. This feature allows researchers
to analyze the different states of the issues in repositories and the
behavior of software code issues of different projects. The user
interface of the G-Issue tool is visualized in Figure 2.
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Table 1: Selected repositories with metadata information

Serial Repository name Commits Contr. Stars Forks Time Selection No. OpenIs- No. Closed Total Issues
sues Issues

1 Spring framework 22,208 531 41,400 28,800 2004-05 to 2022-08 1,391 24,593 25,985
2 Junit-5 6,621 161 4,400 991 2015-01 to 2022-08 135 2,828 2,963
3 Apache kafka 8,590 762 18,000 9,600 2012-08 to 2022-08 1,002 11,477 12,479
4 Apache lucene-solr 34,789 232 4,100 2,700 2016-01 to 2022-08 255 2,411 2,666
5 Dropwizard 5,702 361 7,900 3,300 2011-03 to 2022-08 26 5,518 5,544
6 Checkstyle 9,922 254 5800 7,700 2013-09 to 2022-08 697 11,287 11,984
7 Hadoop 24,612 339 11,300 7,000 2014-09 to 2022-08 681 3,681 4,362
8 Selenium 26,532 558 19,800 6,200 2013-01 to 2022-08 117 10,597 10,715
9 Skywalking 6,242 315 16,100 4,700 2015-11 to 2022-08 62 8,525 8,587
10 Signal android 7,015 223 19,800 4,700 2011-12 to 2022-08 242 10,049 10,291

3.3 Data Collection

One of the challenges in software research is identifying code repos-
itories that have been actively maintained for an extended period.
We identify some characteristics that may give us actively main-
tained repositories to search such code repositories. The character-
istics are as follows: a repository with a minimum of 5000 commits,
at least 100 active contributors, a minimum of 3000 stars, and 500
forks. We use the ModelMine tool [22] which is capable of retriev-
ing repositories with the mentioned criteria. A high number of
stars and forks imply the popularity of the repositories, and a high
number of commits imply maintenance throughout the software
development life cycle. We choose the top ten repositories from the
results provided by the ModelMine tool. Overall, the selected repos-
itories have code changes in commits that will help us to extract
the different source code metrics to reduce threats to the generaliz-
ability of this study. In this study, we have mined repositories and
created a dataset composed of ten open source repositories. Then
we use the G-Issue tool to mine issue-related artifacts. The whole
dataset is now published and available online [20]. The detailed
summary of the ten open source repositories and issues in each
repository are reported in Table 1.

3.4 Terminology

The software issues have some particular terminology we need
to discuss to understand the results. Occasionally, issue-related
artifacts include reporting bugs, requesting new features, refactor-
ing code, and enhancement ideas. Also, the artifacts are typically
created by anyone with title details and consist of the person’s
information, created time, and labels associated with the issues. If
the issue is closed or modified, that record is also documented in
the specific issue.
Here are the details of some terminologies used in this study.

o Issue lifetime - Time from the first opening of the issue to
the first closing of the issue.

e Opened issue - Newly created issue. Each issue is opened
only once during its lifetime.

e Closed issue - issue that is marked closed in the issue track-
ing system. In practice, an issue might be reopened and
closed again, but here we use only the last closing event.

4 RESULTS & DISCUSSION

In this section, we report the results and analysis of the research
questions mentioned in Section 3.1.

4.1 Performance Evaluation

This section discusses the results of the performance of G-Issues
compared to other state-of-art-tools. The performance evaluation
results among the tools are visualized in Table 2. Such a result
provides an idea of which tool performs better during mining issue-
related artifacts and how much fast and memory the tool takes to
mine selected repositories. All these results are produced with the
setup to mine 1000 issues from repositories.

Table 2: Performance evaluation results

Tasks Metrics G-Issue Python API GHTorrent PyDriller G-Repo
Task 1* ET™ 12.1s 18.2s 46.2s Not Not

(Size) MM*™*  18223KB  10211KB 67033KB supported  supported
Task 2 ET 30.22s 41.7s 88.3s Not Not
(Time) MM 20340KB  16547KB 74031KB supported  supported
Task 3 ET 11.8s 15.5s 102.3 Not Not
(Issue-related) MM 19967KB  14566KB 63654KB supported  supported

* Task details are listed in Section 3.1
**ET - Execution Time
*** MM - Max Memory

Table 2 shows that in each task, G-Issue mines a list of 1000
issues with the lowest execution time while GHTorrent mines with
the highest execution time. Python API has the lowest memory
utilization during mining, and GHTorrent has the highest utilization.
Among state-of-the-art tools, PyDriller and G-Repo have focused
on mining software repositories and have no feature to mine issue-
related artifacts.

4.2 Analysis of Issue Lifetime

In this section, the results of issue lifetime among repositories are
discussed and portrayed in Table 3. The table shows the average
days it takes to solve an issue among repositories. Here "Average
days to solve" means how many days it takes to close the issue by
developers since the issue creation date.

From Table 3 results, we can see that Spring Framework project
has the highest on average of 1220 days to solve an issue where
skywalking developers use only 37 days. spring-framework commit
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Table 3: Statistics on days it takes to solve an issue

Project Name Mean (days) Minimum (days) Maximum (days)

1. spring-framework 1220 0 5491
8. selenium 551 0 2574
10. signal-android 215 0 3010
2. junit-5 162 0 2144
3. apache-kafka 104 0 2467
5. dropwizard 101 0 3221
7. hadoop 98 0 2158
4. apache-lucene-solr 91 0 2030
6. checkstyle 57 0 2496
9. skywalking 37 0 1840

count is less than haddop project but average issue lifetime in had-
dop is twelve time less than spring-framework. For each repository,
the minimum issue lifetime day is zero, which implies that within
the issue created date, developers solve the issue and close that.

However, Figure 3 visualizes the boxplot of issue lifetime among
repositories. From the figure, it is noticeable that spring-framework
and selenium has the highest mean of days to solve an issue. Among
all repositories, one issue from spring-framework has taken more
than 5000 days / 13 years to solve. Here, we need to keep in mind
that some issues are closed and reopened later on to receive more
feedback on that issue.

Fmm— - ]F '

e o e

6. checkstyle

|

s
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-
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|

9. skywalking " »

Project Name
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Figure 3: Box plot of days it takes to solve issues among
repositories

4.3 Evolution of Issues

In this section, we discuss the evolution of issues among repositories.

The results of the evolution of issues are visualized in Figure ??
showing a histogram of issue count per year in terms of open or
closed state among repositories.
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Figure 4: evolution of issue-related artifacts over time among
repositories

In every case, the graph implies that new issues are increasing
in number during the software evolution. This number increases
and becomes higher when the close-state issue rate declines. spring-
framework, junit-5, checkstyle and signal-android shows a recent
decline in the rate of closed-state issues and an upward trend of new
issues. The KDE density value represents an increasing number of
issues reported by developers or contributors.

Also, we have seen a pattern of the zigzag move of issues over
the years among the repositories. It implies that when new issues
are introduced within that year, it tries to be solved and closed the
issue. Hence, the continuous maintenance through issue-related
artifact analysis prepares software for the subsequent releases with
improved software quality and minimized bugs in reporting.
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5 CONCLUSION

Software maintenance is crucial during software development. If
the maintenance efforts are not made correctly, the software quality
degrades over time and is hard to fix at one point. To do software
maintenance, developers need feedback in the form of issues. Most
source code management software nowadays provides issues to
report bugs and share ideas for new features.

In this study, we investigated the process of mining, analyzing,
and visualizing issue-related artifacts through a developed tool
called G-Issue. The study primarily compares the performance of
the G-Issue tool with state-of-the-art tools. Moreover, we investi-
gate the lifetime and evolution of issues in well-known open source
projects.

The results show that the G-Issue tool performs a minimum of
33% faster than other state-of-the-art tools. However, in memory
management, G-Issue is higher than the Python API but lower than
other tools. Besides, the results show that highly popular & forked
repositories have more issues; on average, it takes more days to
solve an issue. In terms of evolution, if the rate of the closed issue
is declining, there is a high chance of introducing new issues. Such
results may provide new knowledge about issues-related artifacts
and help team leaders with issue assignments for better software
development.

In future research, we plan to analyze the issue text and apply
natural language processing to identify issue labels, improving the
issue label tracking system.
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