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Abstract
In model-driven engineering (MDE) software projects, large portions of the
executable code are automatically generated from designs and models. This
generated code may or may not be edited by the developers to achieve their
development objectives. MDE projects also include a significant amount of
handwritten code (HC). This handwritten code is developed under unique con-
straints, as it must integrate with generated artifacts and code elements that
are not directly developed by the engineers. These constraints adversely affect
codebase quality and maintainability. This case study aims to investigate the
hypothesis pertaining to the handwritten code quality developed in the con-
text of MDE. The study analyzes these unique code fragments and compares
their characteristics to handwritten code in repositories where code genera-
tion is not present. The study finds that handwritten code quality in the MDE
context suffers from elevated technical debt and code smells. We observe key
code smells that are particularly evident in this handwritten code. These find-
ings imply that code generators must optimize for human comprehension,
prioritize extensibility, and must facilitate integration with handwritten code
elements.
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1 INTRODUCTION

Model-driven engineering (MDE) envisions software development teams that focus primarily on developing models that
would generate all executable artifacts. This vision seems to have been realized only in organizations that have invested
in infrastructures to support domain -specific modeling languages and custom code generators that produce all or most
of the required executable. These organizations can afford the overhead to support the development of compilers, code
generators, and custom-built design languages. Software modeling is undoubtedly a core activity in software develop-
ment. The precise form of modeling varies from whiteboard sketches to models that support code generation. Further,
modeling in some form is a fundamental part of designing, understanding, communicating, and analyzing software
heavy systems.1
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Today, many MDE practitioners generate only a portion of the required executable artifacts. In these cases, engineers
often write code that integrates with and extends the generated code. This handwritten code is unique for many reasons.
The code must integrate with generated artifacts that may not be well-suited for integration. Code generators often do not
follow coding conventions and frequently generate counter-intuitive code that may not be comprehensible.2 Moreover,
the originating models and their code generators may not be designed to prioritize extensibility; further complicating the
engineers’ tasks.3

In addition to the generated code and the handwritten code categories in MDE projects, developers often mod-
ify code that was originally generated from models. This modified code category is also unique; the code is nei-
ther written from scratch or purely generated. Software engineers are often constrained in the way they manipulate
this code.

The goal of this study is to understand the quality characteristics of handwritten code. Specifically, the study
aims to characterize the maintainability of handwritten code fragments in MDE projects. We investigate the hypoth-
esis that handwritten code in MDE contexts suffers from unique deficiencies that have a significant impact on
itsmaintainability.

The rest of this article is organized as follows. The next section presents a background pertaining to MDE projects
and key related methodologies and technologies. The study design is presented in Section 3. Results and Analysis are
presented in Sections 4 and 5. Related works are presented in Section 6. The threats to validity is discussed in Section 7.
We conclude this article in Section 8.

2 BACKGROUND

The potential benefits of MDE are clear; models are much easier to comprehend and provide a better platform to sup-
port collaborations. Models tend to be more visual and can support designs at variable levels of abstractions.4 Moreover,
there is significant potential in improving software engineers’ productivity and the quality of the code they develop by
automatically generating executable artifacts.

Today, only a few organizations have succeeded in achieving this vision. Many MDE adopters generate some artifacts
and rely on software developers to extend the generated code. This handwritten code often consumes the majority of
the maintenance efforts.5 As such, understanding this code quality is fundamental to understanding the MDE value
proposition.

The handwritten code in MDE projects is subject to unique constraints that can affect code quality both positively
and negatively. First, to integrate with generated artifacts is a negative impact of MDE. But on the other hand, having
well-formed unambiguous designs that are part of MDE artifacts would affect code quality positively.6 Therefore, in this
study, we analyze the handwritten code in the MDE context with comparable code from two sets of repositories; those
that include designs and those that do not. In this study, we collect graphical modeling framework (GMF) and eclipse
modeling framework (EMF) based MDE projects because both of these categories are popular, mature, and stable MDE
platforms with extensive code generating engines and customized templates.6 The graphical modeling framework (GMF)
is a framework within the Eclipse platform. It provides a generative component and runtime infrastructure for develop-
ing graphical editors based on the Eclipse Modeling Framework (EMF).7 The EMFs purpose is to allow data models to be
created and then stored in an “ecore” file. However, GMFs purpose is to translate existing EMF models and utilize GEF
(graphical editing framework) to build a graphical editor automatically based on the content.8 Projects that are devel-
oped using GMF/EMF platforms include three unique classes of code. (1) Generated, code that is generated exclusively
from models. (2) Generated and modified, code that is generated but then later modified by engineers. (3) Handwrit-
ten code, this is code developed manually by engineers that either extend or integrate with the previous two classes
of code.

In this study, we hypothesize that code quality characteristics such as code smells (CS) and technical debt (TD) are
elevated in the MDE environment. CS is any surface symptom in the source code that suggest deficiencies related to
maintainability.9 CS appear because of bad software design and programming practices and indicate that code refactoring
may be required.10,11 TD is a metaphor that provides short term benefits but may hurt long term software maintainability.
TD has both positive and negative impacts on software systems. When TD is incurred intentionally to achieve short-term
benefits can be beneficial if the cost associated with TD is made visible and kept under control. However, unintentional
TD could be detrimental to the maintenance of the software systems.12,13
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3 STUDY DESIGN

The goal of this case study is to investigate the quality characteristics of handwritten code in MDE Projects. We followed
Basili et al.14 guidelines to formulate the goal of the study. Specifically, the case study investigates Technical Debt and
Code Smells in MDE handwritten code. Six types of code smell such as large class, large method, excessive imports, god
class, cyclomatic complexity, and duplicate code are identified in this study. For reference, we analyze this handwritten
code to comparable code fragments from non-MDE repositories. Non-MDE repositories include design-driven (DD) and
non-design driven (non-DD) repositories. We followed Runeson et al. guidelines for this case study.15

3.1 Research question

The research is motivated by the following research questions.

RQ1: What are the quality characteristics of handwritten code in the MDE context? How do these characteristics
compare to handwritten code in non-MDE contexts?

RQ2: What are the key code deficiencies in handwritten code in MDE projects? What are the most prevalent code smells
and their severity?

RQ3: How does the technical debt accumulated in handwritten code in the MDE context compare to non-MDE contexts?

3.2 Repository selection and artifacts identification

This study identifies 15 sub-systems (sources are listed in Table 1), 5 identified as MDE repositories (based on GMF/EMF
framework), and 10 identified as non-MDE repositories that are further classified under two classes. These reposi-
tories selection process is visualized in Figure 1. All these 15 repositories can be accessed using the URLs provided
in Table 1.

T A B L E 1 Repository info
Project

URL
at GitHub

MDE WSO2 Tools https://www.github.com/wso2-attic/tools.git

aspirerfid https://www.github.com/mouillerart/aspirerfid.git

pldoctoolkit https://www.github.com/spbu-se/pldoctoolkit.git

UNICASE https://www.github.com/unicase-ls1/unicase.git

Reuseware https://www.github.com/DevBoost/Reuseware.git

DD cdt-tests-runner https://github.com/xgsa/cdt-tests-runner

Oryx-editor https://github.com/andreaswolf/oryx-editor/tree/
02e4c0930742137de5f0dcbf604872624ba91bde

101repo https://github.com/101companies/101repo

Activiti https://github.com/Activiti/Activiti

Poi https://github.com/apache/poi/tree/
47fb3691f76b6f1286a41faea09019eac843119b

Non-DD Selenium https://github.com/SeleniumHQ/selenium

Fastjson https://github.com/alibaba/fastjson

Mal https://github.com/kanaka/mal

Deeplearning4j https://github.com/deeplearning4j/deeplearning4j

Presto https://github.com/prestodb/presto?fbclid=IwAR3fa-
x1cdM2m62544S65j6Cugix-ubR_AOHsLtBJjI1sr0IyOM3ebYbofY

https://www.github.com/wso2-attic/tools.git
https://www.github.com/mouillerart/aspirerfid.git
https://www.github.com/spbu-se/pldoctoolkit.git
https://www.github.com/unicase-ls1/unicase.git
https://www.github.com/DevBoost/Reuseware.git
https://github.com/xgsa/cdt-tests-runner
https://github.com/andreaswolf/oryx-editor/tree/02e4c0930742137de5f0dcbf604872624ba91bde
https://github.com/andreaswolf/oryx-editor/tree/02e4c0930742137de5f0dcbf604872624ba91bde
https://github.com/101companies/101repo
https://github.com/Activiti/Activiti
https://github.com/apache/poi/tree/47fb3691f76b6f1286a41faea09019eac843119b
https://github.com/apache/poi/tree/47fb3691f76b6f1286a41faea09019eac843119b
https://github.com/SeleniumHQ/selenium
https://github.com/alibaba/fastjson
https://github.com/kanaka/mal
https://github.com/deeplearning4j/deeplearning4j
https://github.com/prestodb/presto?fbclid=IwAR3fa-x1cdM2m62544S65j6Cugix-ubR_AOHsLtBJjI1sr0IyOM3ebYbofY
https://github.com/prestodb/presto?fbclid=IwAR3fa-x1cdM2m62544S65j6Cugix-ubR_AOHsLtBJjI1sr0IyOM3ebYbofY
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F I G U R E 1 Repository selection process

The first five MDE sub-systems are selected from a pool of 16 MDE repositories that are reported in the study by He
et al.6 We select these repositories that meet the following criteria, each repository is GMF/EMF framework based, code
size greater than 145k lines of code (LoC), predominantly written in the Java object-oriented programming language, and
the number of commits in GitHub is at least 100. We select specific code size and number of commits to exclude trivial
projects.

To determine whether a project lies within the GMF/EMF category, we checked whether the project includes files with
the extension gmfgen. The gmfgen extension is the generator model of GMF and from which source code is derived.
Since a GMF project may contain many sub-projects, only the sub-projects that are based on GMF/EMF are included in
this study. The details of selecting criteria of these five repositories are described in Reference 6. The next five repositories
are identified as design-driven sub-systems (DD) which are selected from a pool of 4650 identified in Reference 16 to
be model heavy repositories. These 4650 repositories are selected by mining all GitHub repository artifacts that include
UML and modeling elements.17 From this list, we select the top five repositories that meet the following criteria: code
size is greater than 145K lines of code, written predominantly in the Java object-oriented language, and have at least 100
commits in the GitHub repository.

The third set of five repositories are selected as reference repositories. These repositories are identified as non-design
driven (Non-DD). They are selected from the study by Badreddin et al.18 These repositories include similar object-oriented
code size, number of commits, and similar programming language and contributors’ profiles. We ensure that the aver-
age expertise of the active contributors in this set is comparable to the expertise of the contributors of the identified
repositories. For this, we collect profiling information of active contributors such as the history of their edits, years of con-
tribution in GitHub. Table 3 lists all 15 subject code repositories and the number of their identified files, commits, code
size, and analyzed lines of code (LoC). The analyzed LoC column lists the lines of code that were analyzed in this study.
This excludes non-object-oriented code and documentation. File category identifies files where code is model generated,
modified generated, and handwritten without using any tool.

3.3 Data collection

MDE repositories contain three types of files: Generated files (GF), modified generated files (MGF), and handwritten code
(HC). In this study, we extract handwritten code files from the selected MDE repositories by carefully excluding GF and
MGF. This process is achieved by a script19 where results were independently verified.

3.3.1 Study variables

For each project, we consider 12 variables that directly relate to our research questions. The variables description and
relation with the research question are listed in Table 2. The first six variables (#FMDE, #FDD, #FNDD, #LOCMDE, #LOCDD,
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T A B L E 2 Variable description

Variables Description Research question (RQ)

#FMDE Total number of handwritten code files in model driven engineering repositories RQ1

#FDD Total number of files in design driven repositories RQ1

#FNDD Total number of files in non-design driven repositories RQ1

#LOCMDE Total number of lines of code in model driven engineering repositories RQ1, RQ2 and RQ3

#LOCDD Total number of lines of code in design-driven repositories RQ1, RQ2, and RQ3

#LOCNDD Total number of lines of code in non-design driven repositories RQ1, RQ2 and RQ3

#CSMDE Total code smells in model driven engineering repositories RQ1 and RQ2

#CSDD Total code smells in design-driven repositories RQ1 and RQ2

#CSNDD Total code smells in non-design driven repositories RQ1 and RQ2

#TDMDE Total technical debt in model driven engineering repositories RQ3

#TDDD Total technical debt in design-driven repositories RQ3

#TDNDD Total technical debt in non-design driven repositories RQ3

#LOCNDD) are selected under file and code metrics to compare the relationship between MDE and non-MDE repositories
code quality.

The variables (#CSMDE, #CSDD, #CSNDD) represent CS value for each MDE, design-driven (DD), and non-design driven
(Non-DD) repositories. These variables provide total occurrences of all CS in handwritten code to help answer the second
research question (Table 3).

The last three variables (#TDMDE, #TDDD, #TDNDD) are related to the third research question and refers to TD in the
selected repositories in MDE, DD, and non-DD repositories, respectively.

We construct two complex variables related to density for further analysis in this study. These variables are (#CSDMDE,
#CSDDD, #CSDNDD, #TDDMDE, #TDDMDE, #TDDMDE) and are described as code smell density (CSD) and technical debt
density (TDD) in MDE, DD, and non-DD repositories, respectively. The variables are constructed by using these equations
below.

#CSDX = #CSX

#LOCX
(1)

#TDDX = #TDX

#LOCX
(2)

where X represents MDE or DD or non-DD repositories.

3.3.2 Metrics and thresholds

Metrics and thresholds are uniform for all subject repositories as listed in Table 2 and 5. The Table 2 describes the defi-
nitions of all twelve variables that are used in this study. We develop a custom program19 that can read all the files and
folders from the MDE repositories iteratively using the Java program extension and constructs an array of files and direc-
tories by filtering .JAVA or .java extension. To identify handwritten code files from previous filtered results, we determine
which files are GF and which files are MGF. We classify the files that do not belong to Generated or Modified Generated
as handwritten code files. The classification process of the files is followed by some search criteria which are shown in
Table 4. This file search process is performed within MDE repositories.

3.3.3 Code quality metrics

This section describes CS and TD that asses the code quality of the subject code repositories.
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T A B L E 3 Basic information of subject software repositories

No. of files Analyzed LoC

Repository Commits Code size File category Count % Count %

MDE WSO2 Tools 2, 609 1, 009, 000 GF 3, 025 35.3 311, 422 30.8

MGF 615 7.2 149, 801 14.8

HC 4934 57.5 550, 709 54.6

aspirerfid 341 145, 000 GF 397 25.7 37, 657 25.9

MGF 55 2.8 3, 124 2.15

HC 1105 71.5 99, 147 68.4

pldoctoolkit 493 182, 000 GF 587 58.2 68, 636 37.7

MGF 102 10.1 14, 537 7.9

HC 320 31.7 30, 076 16.5

UNICASE 8, 506 289, 000 GF 3, 202 54.6 406, 819 59.7

MGF 464 7.9 111, 792 16.4

HC 2196 37.5 161, 789 23.7

Reuseware 104 526, 000 GF 4, 193 80.6 598, 755 85.8

MGF 107 2.1 25, 414 3.6

HC 903 17.4 73, 912 10.6

DD Cdt-tests-runner 19, 589 1, 003, 261 HC 8,122 982, 425 97.9

Oryx-editor 2, 022 640, 127 2,887 543, 704 84.9

101repo 2312 183, 083 1421 154, 437 84.4

Activiti 7741 207, 339 3,078 192, 812 93.0

Poi 9157 450, 906 3,575 427, 326 94.8

Non-DD Selenium 21, 788 875, 267 HC 4150 775, 268 88.6

Fastjson 2673 168, 880 2537 149, 186 88.3

Mal 2249 178, 870 1,567 166, 296 93.0

Deeplearning4j 9301 283, 711 2062 221, 711 78.1

Presto 15, 786 716, 021 5632 716, 021 100

File category Search criteria

Generated files (GF) Search in all files by these strings: “@generated,” “@Generated”

Modified generated files (MGF) Search in all files by these strings: “@generated NOT,”,
“@generated not,” “@Generated not,” “@Generated NOT”

Handwritten code (HC) The files that do not belong to generated or generated and
modified are considered as handwritten code files.

T A B L E 4 File search
criteria

Code smell: We use PMD,20 a source code analysis tool to identify code smells. We select six types of CS as
listed in Table 5 which include God Class, Excessive Class Length, Excessive Method Length, Duplicate Code, Cyclo-
matic Complexity, and Excessive Imports. The details of these CS can be found in PMD tool documentation.20

These CS are selected because they are frequently used in literature12,21 as TD indicators. For instance, God
Class, Duplicate Code, and Cyclomatic Complexity are related to TD, which influence the maintainability of
source code.6
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T A B L E 5 Detected types of code smells No. Code smell Threshold

1 Large class 1000 LOC

2 Large method 100 LOC

3 Excessive imports 30 imports

4 God class N/A

5 Cyclomatic complexity 10

6 Duplicate code 100 duplicated blocks

(A) Large Class (B) Large Method

(C) Duplicate Code E) God Class

(E) God Class (F) Cyclomatic Complexity

F I G U R E 2 Code smells in MDE, DD, and non-DD repositories [Color figure can be viewed at wileyonlinelibrary.com]

In this study, all the CS are measured by the PMD tool except for Duplicate Code. Duplicated Code Smell and its density
are measured by SonarQube by identifying duplicated block counts of a project divided by physical lines of code. Other
CS density are measured by the CS counts divided by analyzed lines of code and multiplied by 100. This density refers to
the number of CS per line of code.

Technical debt: TD of subject software repositories are measured using source code analysis tool SonarQube.
SonarQube computes TD based on the Software Quality Assessment which is based on Lifecycle Expectations
methodology (SQALE).22 The SQALE is a methodology that organizes non-functional requirements related to code
quality. Non-functional requirements are realized in terms of coding rules and issues in the SonarQube imple-
mentation of the SQALE method. The details of this TD calculation by SonarQube can be found in SonarQube
documentation.23

We perform similar calculations to measure TD density by dividing the TD counts by analyzed lines of code and
multiplying by 100. This density refers to the number of TD per line of code. In other words, the number of TD is the total
number of days it will take to fix an issue per line of code.

In Figures 2 and 3, R1, R2…R5 represents a set of three types of repository that includes MDE, design-driven (DD),
and non-design driven (Non-DD), respectively. This repository set selection process for R1, R2…R5 has been conducted
sequentially. For instance, MDE repository WSO2 Tools is selected with Cds-test-Runner and Selenium from DD and
Non-DD repository list respectively. These groups (R1, R2..R5) are made because the same group of repositories have
similar code size and use objected oriented programming language as a primary language.

http://wileyonlinelibrary.com
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F I G U R E 3 Technical debt (TD) result [Color figure can be
viewed at wileyonlinelibrary.com]

4 RESULTS

Our assessment criteria are based on two primary measurements; measurements of code smells and measurements
of technical debt. Code smells and technical debt are calculated by the total number of code smells and technical
debt (number of days). These measures are normalized by using a density. In the following, we report on these two
measurements.

4.1 Code smell results

Table 6 lists all six types of code smells and technical debt that are measured by code static analysis tool PMD20 and
SonarQube.23 The total number of code smells in handwritten code in the MDE context are significantly reduced as shown
in Table 6. The total number of CS increases with code size metrics in any type of repositories. We found that handwritten
code in MDE contexts are associated with reduced CS (#CSMDE <#CSDD & #CSMDE <#CSNDD). Since the number of CS
is associated with elevated values when the code size increases, we calculate the frequency of CS for each repository, and
we formulate normalized CS metrics as CS density.

Figure 2 illustrates results of six CS density of MDE HC and non-MDE repository code. Figure 2(A–F) illustrates large
class, large method, duplicate code, excessive imports, god class, and cyclomatic complexity CS density, respectively. In
addition, we report on pairwise comparative analysis of CS in MDE handwritten code and non-MDE repository code.

Figure 2 shows that 60% of the HC from selected MDE repositories have elevated large method, duplicate code, and
cyclomatic complexity CS densities. In the case of excessive imports and god class CS densities, 80% of the HC (MDE)
have more CS density than non-MDE repository code. However, we observed opposite the results in Large class CS density
in 80% of the HC in selected MDE repositories. We also found that all MDE HC associated with elevated CS density on
average compared to non-DD repositories (In Figure 4, #CSDMDE >#CSDNDD). However, MDE CS density is slightly less
compare to DD repositories (#CSDMDE <#CSDDD).

In normalized CS, we found that large methods, excessive imports, cyclomatic complexity are the top three CS that
are introduced in MDE HC. However, god class and large class are the least introduced CS in the MDE environment.

4.2 Technical debt results

Table 6 shows a total number of Technical Debt in MDE handwritten code and non-MDE repository code. We found that
total TD in MDE HC is associated with reduced TD. In other words, HC in the MDE environment introduce less TD than

http://wileyonlinelibrary.com
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T A B L E 6 Code smells and technical debt results

Code smells

Repository
Analyzed
LoC

Large
class

Large
method

Code
clone

Excessive
imports

God
class

Cyclomatic
complexity Total

Technical
debt (days)

MDE WSO2 Tools 550, 709 78 636 5600 371 414 1872 8971 741

aspirerfid 99, 147 10 103 1000 40 40 257 1450 166

pldoctoolkit 30, 076 1 24 349 24 15 97 510 50

UNICASE 161, 789 8 49 1281 122 49 297 1806 148

Reuseware 73, 912 5 44 794 18 62 217 1140 100

Total 915, 633 102 856 9024 575 580 2740 13, 877 1205

Average 183, 127 20 171 1805 115 116 548 2775 241

DD Cdt-tests-runner 982, 425 150 477 9535 69 319 1619 12, 169 1200

Oryx-editor 543, 704 16 28 16, 991 30 62 277 17, 404 486

101repo 154, 437 1 15 2475 0 6 43 2540 386

Activiti 192, 812 19 77 890 40 66 302 1394 122

Poi 427, 326 96 311 1628 131 238 1362 3766 322

Total 2, 300, 704 282 908 31, 519 270 691 3603 37, 273 2516

Average 460, 141 56 182 6304 54 138 721 7455 503

Non-DD Selenium 775, 268 3 8 10, 104 71 11 92 10, 289 217

Fastjson 149, 186 23 103 1955 10 25 341 2457 196

Mal 166, 296 0 2 3075 0 4 27 3108 415

Deeplearning4j 221, 711 79 374 2699 184 160 1381 4877 720

Presto 716, 021 57 181 2536 744 114 693 4325 420

Total 2, 028, 482 162 668 20, 369 1009 314 2534 25, 056 1968

Average 405, 696 32 134 4074 202 63 507 5011 394

non-MDE environment code. To normalize the total number of TD in the MDE handwritten code base, we computed TD
density.

Figure 3 illustrates TD density results for MDE HC and non-MDE repository code. Overall, 80% of HC from selected
MDE repositories have higher TD density than non-MDE repository code.

We also calculate TD elevation between MDE handwritten code bases and non-MDE repositories. There is a 10.2%
TD density elevation in all five MDE HC compared to non-DD repository code (#TDDMDE >#TDDNDD) and TD density
increased compared to DD is 6.5% (#TDDMDE >#TDDDD) in Figure 5.

5 ANALYSIS

The study results demonstrate that both code smells and technical debt is significantly elevated in handwritten code in
MDE repositories. There are smells that were largely unique to this handwritten code, namely, large methods, duplicate
code, and excessive imports. Interestingly, this code also had a significantly low number of large class code smells. This
suggests that refactoring for large methods would be relatively straightforward. Another key finding is that TD density
was incurred in HC code in the MDE context (Figures 3 and 5). Based on our sample, we found evidence that designs
by themselves tend to reduce TD compare to MDE HC TD, as evident in the TD density for design-driven repositories.
Further, this would suggest that the elevated TD counts in MDE repositories are largely due to the unique constraints that
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F I G U R E 4 Average code smell density results [Color figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Average technical debt density results [Color
figure can be viewed at wileyonlinelibrary.com]

software engineer face in developing this code. Overall, this confirms the hypothesis that handwritten code in the MDE
context is subject to unique constraints that adversely affect its quality and sustainability. This suggests that handwritten
code requires more attention and maintenance. Robust modeling tool can make the task easier integrating handwritten
code with model-generated code. For example, code generation rules require to redefining to reduce code smells and TD.
Moreover, avoiding edits on tool generated code can reduce TD and code smell as well. In addition, the model sent to
the code generator can be defective and the modeling tool generates source code precisely according to input models and
it will convert defective models into defective code. To minimize this issue customized modeling tool can be applied to
MDE which is also proposed in Reference 24.

5.1 RQ1: Quality characteristics of handwritten code in MDE context

The first research question investigates the code quality characteristics. For that, we found that code smell density and
TD density are elevated in HC in MDE repositories. For example, large method code smell is elevated in three triplets
(R1,R2,R3) out of five compared to DD and non-DD repositories in Figure 2(B). In Figure 2(D), excessive imports code
smells shows the same results. We also observe that Cyclomatic complexity to be elevated in HC MDE repositories
(Figure 2(F)). Moreover, Figure 4 depicts average code smell density in all MDE repositories is maximum compare to
DD and non-DD repositories. Thus, we answer our first research question which is related to code characteristics of
handwritten code in the MDE context.

5.2 RQ2: Code deficiencies in handwritten code in MDE projects

The second research question focuses on investigating unique deficiencies in the handwritten code in MDE contexts.
This study finds that large method code smell density is the highest overall in HC code, followed by duplicate code and

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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excessive imports in Figure 2. Large method code smells are often associated with Large class smells, but this was not the
case in this study. This suggests that classes in the HC MDE context have few numbers of methods but with a significantly
large number of lines of code within each method. This is potentially due to how these methods grow over time, or how
these methods extend and/or integrate with generated artifacts. Therefore, there are specific types of code smells that are
increased in HC in the MDE context and we answer our second research question RQ2.

5.3 RQ3: Technical debt accumulated in handwritten code in MDE context

The third research question investigates technical debt measures. Often, TD follows code smells as is the case in this study.
In Figure 3, TD count and density are elevated in HC code in MDE contexts in all four subject MDE repositories. Further,
Figure 5 shows higher technical debt density in HC (MDE ) compare to DD and non-DD repositories. The intuition is
that HC in the MDE context are not well maintained and these triggers incurred TD.

6 RELATED WORKS

There is very limited literature on code quality within the context of MDE environment. Hutchinson et al.25 con-
ducted an empirical study of MDE projects in the context of industry by questionnaire and interviews. They
reported on the understanding of social and organizational factors on MDE usages and investigated factors of
failure and success aspects of MDE such as benefits of code generation. Moreover, Fernandez-Saez et al.26 con-
ducted interviews and questionnaire on UML and software modeling with employees of a software company
who works on software maintenance projects. The results of this survey suggest that UML modeling is benefi-
cial; however, there are concerns about integrating modeling into the overall software engineering approach. These
investigations are based on interviews and questionnaires on industry MDE software. However, our study inves-
tigates characteristics of handwritten code (HC) in MDE and non-MDE software sub-systems from open-source
GitHub.

In MDE projects, most or at least some code is automatically generated from models. He et al. analyzed 16 MDE
projects and found that the generated code contains more code smells than what software developers would normally
produce.6 This study by He et al. observed there seems to be limited literature on TD in the context of modeling and
MDE.27 Izurieta et al. discussed in a position paper basic concepts of TD in the context of MDE but did not provide
code-level analysis.28

Nurgoho and Chaudron29 analyzed the impacts of UML modeling (class diagram and sequence diagram) in terms of
defect density with software modules that are not modeled and found that UML modeling reduces the defect density in
code than not modeled modules.

Consequently, Lucredio et al.5 conducted three case studies and measured the impact of MDE on software reuse. They
compared software systems that are developed in MDE and non-MDE environments. The results of this investigation
suggest that in some domains such as in the business domain MDE environment improves re-usability. However, the
MDE environment software development approach is associated with some maintenance costs.

Mohagheghi and Dehle30 reported on MDE applications in the industry; their studies aims at investigating the
impact of MDE on software quality. They conducted a literature review of 25 papers and found very few empiri-
cal data that focuses on the quality of software that is developed in the MDE environment. In their report, they
found when MDE is applied in software developed it advocates the productivity and the quality of the software
system.

Arisholm et al.31 carried out controlled experiments to assess the impacts of using UML documentation in soft-
ware maintenance. The results of this study suggest that UML documentation does help to save effort in terms of time.
Moreover, the authors found that UML documentation has positive impacts on the most complex tasks. Dzidek et al.32

conducted similar controlled experiments and observed UML provides benefits in terms of correctness, time, and software
quality.

However, model and code synchronization is reported as the most fragile and time-consuming activity (see Forward
and Lethbridge4 and Thorn and Gustafsson33). They found that software models are used as means of communication
and collaboration among team members.
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7 THREATS TO VALIDITY

There are some threats to validity in this study that we categorize as construct threats to validity and external threats to
validity. Constructs threats refer to threats to which the study measures what it claims to be measuring. However, external
threats refer to whether we can generalize this study with different settings. This study does not deal with internal threats
to validity and we exclude it.

7.1 Construct validity

The selected types of CS are a subset of all the CS that are predominantly found in the code-base and indicate maintenance
needed in the code-base. We do not claim that the selected types of CS are a complete set for TD. Furthermore, we do
not claim that other CS that are not included in this study can not be TD indicators. However, it is an open question to
investigate which code smells are more suitable than others as TD indicators. In the future, we plan to repeat this study
with other code smells.

The second threat of this study is the precision of measuring CS by PMD and SonarQube tool. We do not claim that
PMD and SonarQube are the best tools to measure CS. There are many source code analysis tools out there that can
measure CS. We use SonarQube and PMD because these are the most popular and standard source code analysis tools.34,35

We plan to minimize this threat by using multiple code analysis tools and synthesizing the results.
The third threat is artifacts identification in MDE and non-MDE projects which verifies whether a selected project is

MDE or non-MDE. We conducted a semi-automated process to identify MDE elements in the codebase. We do not claim
that our identification process is the most appropriate one. This threat can be minimized by regenerating the code from
models and compare the current version with the regenerated version. However, this requires a lot of effort that can not
be spent in this explanatory study.

The fourth threat is the comparison of TD in handwritten code (MDE environment) with TD in non-MDE code
whether reasonable or not. We argue that this is reasonable to compare because we compare non model generated
code quality with the non-MDE code. This is comparable since the coding is similar in terms of codebases which are
handwritten.

7.2 External validity

There is the risk that the selected 15 repositories are not the best representation of the general practices and other
open-source repositories. This risk is introduced in the selection process. To minimize this risk, we selected repositories
of sizes close to the median repository size in GitHub. We also excluded repositories that are trivial. We defined trivial
repositories that have less than 100 commits and code size is less than 145k.

The second external threat of this study is identifying MDE projects considering the GMF/EMF framework. There are
some other modeling frameworks such as Xtext that also can generate executable code from the model. We use GMF/EMF
because these are the most popular modeling frameworks in the MDE context.36

The third type of threat is identifying comparable repositories by their code size, the number of commits in GitHub,
and primary programming language. We do not argue that these criteria are the best criteria to select comparable MDE and
non-MDE repositories. In the future, we plan to include other criteria such as software domain and software technology
to identify comparable repositories.

The fourth external threat is we undermine the importance of assessing some confounding factors such as developers
expertise. Assessing these types of confounding factors will not give us a perfect perception of MDE environment, but
may provide us the developer’s circumstances under which the MDE environment could be beneficial.

Moreover, all the code repositories were selected from the GitHub open-source platform, conclusions from this study
should be comprehended within the context of open-source software.

8 CONCLUSION

The study analyzes the code quality characteristics in MDE repositories. We investigate the handwritten code in MDE
projects and compare their code quality with non-MDE environment codebases. The handwritten code in the MDE
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context is unique because it must integrate with and extend code that is automatically generated from models. The
results of this study suggest that the handwritten code developed in MDE environments suffers from elevated levels
of code smells and technical debt. This HC shows degraded quality in terms of poor design. The study found that
there are more code smells, such as god class, excessive imports, large method, and cyclomatic complexity, that are
more prevalent in handwritten code in MDE repositories. In addition, measures of technical debt were also elevated in
this code.

In this study, we reported key code smells that tend to be more prevalent in this unique handwritten code; namely,
large method, excessive imports, and duplicate code smell. We attribute this to the constraints that are unique to
the handwritten code in MDE projects. These constraints include integrated and extended generated artifacts. MDE
repositories often use code generators that may produce code that is not intuitive or comprehensible. Such factors,
among others, contribute to the degraded code quality. And since this handwritten code tends to consume a signifi-
cant portion of the maintenance effort, its degraded quality may cancel out or overshadow the benefits of automated
code generation.

This study highlights the need to optimize code generators for human comprehension, and to prioritize generating
modular extensible code.
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