
Performance Analysis of Machine
Learning Approaches in Software
Complexity Prediction

Sayed Moshin Reza, Md. Mahfujur Rahman, Hasnat Parvez,
Omar Badreddin, and Shamim Al Mamun

Abstract Software design is one of the core concepts in software engineering. This
covers insights and intuitions of software evolution, reliability, and maintainability.
Effective software design facilitates software reliability and better quality manage-
ment during development which reduces software development cost. Therefore, it
is required to detect and maintain these issues earlier. Class complexity is one of
the ways of detecting software quality. The objective of this paper is to predict class
complexity from source code metrics using machine learning (ML) approaches and
compare the performance of the approaches. In order to do that, we collect ten popular
and quality maintained open source repositories and extract 18 source code metrics
that relate to complexity for class-level analysis. First, we apply statistical correlation
to find out the source code metrics that impact most on class complexity. Second,
we apply five alternative ML techniques to build complexity predictors and compare
the performances. The results report that the following source code metrics: Depth
inheritance tree (DIT), response for class (RFC), weighted method count (WMC),
lines of code (LOC), and coupling between objects (CBO) have the most impact on
class complexity. Also, we evaluate the performance of the techniques, and results
show that random forest (RF) significantly improves accuracy without providing
additional false negative or false positive that work as false alarms in complexity
prediction.

S. Moshin Reza · O. Badreddin
University of Texas, Austin, TX, USA
e-mail: sreza3@miners.utep.edu

O. Badreddin
e-mail: obbadreddin@utep.edu

Md. Mahfujur Rahman (B)
Daffodil International University, Dhaka, Bangladesh
e-mail: mrrajuiit@gmail.com

H. Parvez · S. Al Mamun
Jahangirnagar University,Dhaka, Bangladesh
e-mail: hasnatiit847@gmail.com

S. Al Mamun
e-mail: shamim@juniv.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. S. Kaiser et al. (eds.), Proceedings of International Conference on Trends
in Computational and Cognitive Engineering, Advances in Intelligent Systems
and Computing 1309, https://doi.org/10.1007/978-981-33-4673-4_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4673-4_3&domain=pdf
mailto:sreza3@miners.utep.edu
mailto:obbadreddin@utep.edu
mailto:mrrajuiit@gmail.com
mailto:hasnatiit847@gmail.com
mailto:shamim@juniv.edu
https://doi.org/10.1007/978-981-33-4673-4_3


28 S. Moshin Reza et al.

Keywords Software complexity · Software quality ·Machine learning · Software
design · Software reliability

1 Introduction

Software design is a process of creating software artifacts, primitive components,
and constraints. Effective software design with object oriented structures facilitates
better software quality, reusability, and maintainability [1]. One of the quality fac-
tors is complexity. This quality attribute is determined by many factors related to
code structures, object-oriented properties, and source code metrics [2]. The less the
complexity of a software, the less the cost of software development will be [3, 4].
This motivates us to research on software complexity prediction.

In software life cycle, the more the complexity is, maintenance becomes costly,
unpredictable, human-intensive activity [2]. Moreover, high maintenance efforts
often affect the software sustainability thatmany software systemsbecomeunsustain-
able over time [5, 6]. Therefore, software redesign becomes an essential step where
complexity of the software needs to be reduced. Such action will enhance software
maintainability and reduce the associated costs [7, 8]. Having set the importance of
complexity detection for software redesign, we are motivated to predict class-level
complexity from source code metrics.

Some studies introduced McCabe complexity, a widely accepted metrics devel-
oped by Thomas McCabe to show the level of software complexity [9]. Another
approach on calculation of software complexity was based on counting number of
operators and operands in software. But the calculation and counting process of total
operators and operands are tedious [10].

In this paper, we use machine learning techniques to build complexity predictor.
The reason behind using machine learning to get rid of manual process or code rules
to detect class complexity. Also, successful research on detecting software defect,
vulnerability using ML techniques motivate us [11, 12]. We use five ML classifiers,
analyze the performance of the classifiers, and report the best technique in complexity
prediction.

The rest of the paper is organized as follows. We present literature reviews in
Sect. 2. We describe research methodology in Sect. 3. Results and evaluation are
discussed in Sect. 4 and finally, we conclude the paper in Sect. 5.

2 Literature Review

Several research on code quality from source code metrics includes fault-prone mod-
ules detection [1], early detection of vulnerabilities [11], improvement of network
software security [13, 14], software redesign [9], etc. All of these researches are
targeted to reduce the maintenance effort and cost during the software development.



Performance Analysis of Machine Learning Approaches … 29

Chowdhury et al. investigate the efficacy of applying cohesion, complexity, and cou-
plingmetrics to automatically predict vulnerability and complexity entities [11]. This
study used machine learning and statistical approaches to predict vulnerability that
learn from the cohesion, complexity, and coupling metrics. The results indicate that
structural information from the non-security realm such as cohesion, complexity,
and coupling is useful in vulnerability prediction which minimize the maintenance
effort.

Another study proposed by Briand et al. [15] analyzed correspondence between
object-oriented metrics and fault proneness. This research results are created based
upon fewnumber of classes analysis. Gegick et al. [16] developed a heuristicmodel to
predict vulnerable components and complexity. The model was successful on a large
commercial telecommunications software and predicted vulnerable componentswith
8% false positive rate and 0% false negative rate.

In this research, we analyze source code metrics in relation to complexity. Also,
we apply ML techniques to predict complexity from source code metrics.

3 Research Methodology

This research has twomain goals. First, analyze source code metrics to what extent it
is possible to predict complexity. Second, report the best ML approaches evaluating
relative effectiveness in prediction of complexity from source code metrics. The
details of our research questions, datasets, and machine learning approaches are
discussed in the following subsections.

3.1 Research Questions

This research is focused on answering two primary research questions.

ResearchQuestion 1: How source codemetrics are correlated with quality attribute:
class complexity?

This question reveals the relationships between complexity and source code met-
rics, such as number of attributes, and lines of code. To answer this question, we apply
statistical correlation on 18 source code metrics and complexity collected from ten
different source code repositories to find out the relationship.

Research Question 2: How accurately can machine learning approaches predict
class complexity from source code metrics?

This question is targeted to find out the accuracy of machine learning approaches
in class-level complexity detection. We apply five machine learning techniques and
evaluate the performance. This question reveals the best technique in detecting class
complexity from source code metrics.



30 S. Moshin Reza et al.

3.2 Proposed Research Framework

The proposed research is build upon three steps. First, extracting source code metrics
and complexity from classes of large code bases. Second, prepare the dataset for
complexity prediction by applying data cleaning process. Third, applyML techniques
and evaluate to find out the best one.

For the first step, we extract source code metrics and quality feature: complexity
from a large number of classes. The details of dataset creation process are discussed
in Sect. 3.3. In the second step, we apply data cleaning process to get better learned
MLmodel. Uncleaned data fed into machine learning techniques may result to a bad
model creation [17]. The details of the process are discussed in Sect. 3.4. For the final
step, we select several ML techniques and train the dataset to detect highly complex
classes. We also assess ML prediction effectiveness using performance metrics. The
detailed picture of the study is shown in Fig. 1.

3.3 Dataset Collection

Dataset for complexity prediction needs diverse set of repositories. We search code-
base repositories using ModelMine tool [18] with the following criteria; a repository
with primary language Java, a minimum of 5000 commits, at least 100 active contrib-
utors, a minimum of 3000 stars and 500 forks. The selected repositories are shown
in Table 1 with repository metadata information.

To validate the diversity of repositories, we consider high number of stars and
forks as a proxy for popularity of repositories and high number of commits as a
proxy of maintenance. Also, we consider repository size as follows: low (1–1000

Fig. 1 Proposed methodology



Performance Analysis of Machine Learning Approaches … 31

Ta
bl
e
1

Se
le
ct
ed

re
po

si
to
ri
es

w
ith

m
et
ad
at
a
in
fo
rm

at
io
n

Se
ri
al

R
ep
os
ito

ry
na
m
e

R
ep
os
ito

ry
lin

k
C
om

m
its

C
on
tr
ib
ut
or
s

St
ar
s

Fo
rk
s

L
in
es

of
co
de

C
la
ss
es

1
Sp

ri
ng

fr
am

ew
or
k

ht
tp
s:
//
gi
th
ub
.c
om

/
sp
ri
ng
-p
ro
je
ct
s/
sp
ri
ng
-

fr
am

ew
or
k

21
,1
54

49
1

38
,2
00

25
,8
00

23
2,
44
7

56
28

2
Ju
ni
t5

ht
tp
s:
//
gi
th
ub
.c
om

/j
un

it-
te
am

/j
un

it5
/

62
86

14
6

40
00

89
9

16
,8
56

65
9

3
A
pa
ch
e
K
af
ka

ht
tp
s:
//
gi
th
ub
.c
om

/
ap
ac
he
/k
af
ka

77
87

69
1

16
,3
00

87
00

11
9,
29
9

24
63

4
A
pa
ch
e

L
uc
en
e-
So

lr
ht
tp
s:
//
gi
th
ub
.c
om

/
ap
ac
he
/l
uc
en
e-
so
lr

33
,8
99

19
4

36
00

25
00

60
2,
18
5

88
50

5
D
ro
pw

iz
ar
d

ht
tp
s:
//
gi
th
ub
.c
om

/
dr
op
w
iz
ar
d/
dr
op
w
iz
ar
d

54
48

34
5

77
00

32
00

14
,2
68

50
8

6
C
he
ck
st
yl
e

ht
tp
s:
//
gi
th
ub
.c
om

/
ch
ec
ks
ty
le
/c
he
ck
st
yl
e

94
08

23
2

54
00

74
00

26
,0
30

45
4

7
H
ad
oo
p

ht
tp
s:
//
gi
th
ub
.c
om

/
ap
ac
he
/h
ad
oo
p

24
,0
01

28
0

10
,6
00

66
00

69
5,
99
2

10
,4
96

8
Se
le
ni
um

ht
tp
s:
//
gi
th
ub
.c
om

/
Se
le
ni
um

H
Q
/s
el
en
iu
m

25
,3
54

51
8

18
,1
00

58
00

36
,0
31

11
75

9
Sk

yw
al
ki
ng

ht
tp
s:
//
gi
th
ub
.c
om

/
ap
ac
he
/s
ky
w
al
ki
ng

57
53

24
5

14
,0
00

41
00

61
,5
88

25
31

10
Si
gn
al
-A

nd
ro
id

ht
tp
s:
//
gi
th
ub
.c
om

/
si
gn

al
ap
p/
Si
gn

al
-

A
nd
ro
id

57
77

20
6

13
,4
00

34
00

11
6,
26
8

28
61

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
https://github.com/junit-team/junit5/
https://github.com/junit-team/junit5/
https://github.com/apache/kafka
https://github.com/apache/kafka
https://github.com/apache/lucene-solr
https://github.com/apache/lucene-solr
https://github.com/dropwizard/dropwizard
https://github.com/dropwizard/dropwizard
https://github.com/checkstyle/checkstyle
https://github.com/checkstyle/checkstyle
https://github.com/apache/hadoop
https://github.com/apache/hadoop
https://github.com/SeleniumHQ/selenium
https://github.com/SeleniumHQ/selenium
https://github.com/apache/skywalking
https://github.com/apache/skywalking
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android


32 S. Moshin Reza et al.

Fig. 2 Complexity distribution among repositories

classes), medium (1001–5000 classes), and high (more than 5000 classes) in size.
This selection implies diversity in complexity of classes. Figure 2 shows number of
complexity classes against each selected repository where three of them are selected
from low, four of them are selected from medium, and rest of them are selected from
high volume of category.

After extracting code repositories, we extract source code metrics for each class
in the repository using CODEMR tool [19]. The tool provides 18 unique source code
metrics for each class. The details of the source codemetrics are described in Table 2.
The target variable data is collected also for each class using same tool with different
process. The data is then combined using the class file name for training and testing
purpose.

3.4 Dataset Cleaning and Analysis

Data cleaning is critically important step for the complexity prediction. To get opti-
mistic performance result of ML approaches, we clean the data in two stages. First,
by identifying column variables that have single value or very few unique values.
In this stage, we also remove the duplicate observations. In second stage, we apply
box plot for each source code metrics and find the outliers. This technique helps to
remove the bias datapoints from the dataset.

After cleaning the dataset, we have come up with much more differential and
clear dataset for complexity prediction. Figure 3a visualizes the relationship between
weighted method count, lines of code, and complexity. Figure 3b visualizes the
relationship between response for class, method lines of code, and complexity.



Performance Analysis of Machine Learning Approaches … 33

Table 2 Source code metrics

No Source code metric name Description

1 Class lines of code (CLOC) The number of all non-commented and
nonempty lines of a class

2 Weighted method count (WMC) The weighted sum of all class’ methods

3 Depth of inheritance tree (DIT) The location of a class in the inheritance tree

4 Number of children (NOC) The number of associated sub-classes of a
class

5 Coupling between object classes (CBO) The number of classes that another class is
coupled to

6 Response for a class (RFC) The number of the methods that can be
potentially invoked in response by an object
of a class

7 Simple response for a class (SRFC) The number of the methods that can be
potentially invoked in response by an object
of a particular class

8 Lack of cohesion of methods (LCOM) Measure how methods of a class are related
to each other

9 Lack of cohesion among methods (LCAM) Measure cohesion based on parameter types
of methods

10 Number of fields (NOF) The number of fields (attributes) in a class

11 Number of methods (NOM) The number of methods in a class

12 Number of static fields (NOSF) The number of static fields in a class

13 Number of static methods (NOSM) The number of static methods in a class

14 Specialization index (SI) Measures the extent to which sub-classes
override their ancestor’s classes

15 Class-methods lines of code (CMLOC) Total number of all nonempty,
non-commented lines of methods inside a
class

16 Number of overridden methods (NORM) The number of methods that are inherit from
a super-class and has return type as the
method that it overrides

17 Lack of tight class cohesion (LTCC) Measures cohesion between the public
methods of a class and subtract from 1

18 Access to foreign data (ATFD) The number of classes whose attributes are
directly or indirectly reachable from the a
class



34 S. Moshin Reza et al.

(a) WMC, LOC vs Complexity (b) SRFC, CMLOC vs Complexity

Fig. 3 Relationship of input variables with target variable

3.5 Machine Learning Classifiers and Evaluation Metrics

This subsection provides a brief overviews of five alternative machine learning clas-
sifiers used to build class complexity predictors. The machine learning classifiers
are as follows: (1) Naive Bayes (NB), (2) Logistic Regression (LR), (3) Decision
Tree (DT), (4) Random Forest (RF), and (5) AdaBoost (AB). These classifiers are
well-known classifiers in building vulnerability predictors and used in several sim-
ilar research [11, 20, 21]. The statistical performance of selected ML classifiers is
calculated by performing ten-fold cross-validation technique. Cross-validation is a
technique for assessing how accurately a predictive model will perform in practice
after generating the model [22]. The objective of such operation is to reduce the
variability of the results.

4 Result and Discussion

This section describes the results of correlation analysis, complexity prediction using
ML models and compares the performance of ML classifiers.

4.1 Correlation Results

The results of Pearson correlation reveal the impact of source codemetrics on quality
attribute: complexity. Figure 4 visualizes the correlation between source codemetrics
and complexity. It is clear in the figure that not any single metric highly impact on
complexity. This quality attribute is formed based on a combined behavior of source
codemetrics. Among the codemetrics, DIT, SRFC, RFC,WMC, CMLOC, and CBO
have moderately high impact on complexity. Generally, classes with higher number
of WMC, LOC, or DIT associated with high number of defect in the software,



Performance Analysis of Machine Learning Approaches … 35

Fig. 4 Correlation among source code metrics and quality attribute

and it becomes hard to maintain over time [12]. This issue is also mentioned by
Subramanyam et al. that DIT and CBO have influenced class complexity [12]. In
another research, Chowdhury et al. experimentally showed that WMC, DIT, RFC,
and CBO code-level metrics are strongly correlated to vulnerabilities which are
directly generated from file complexity [23]. This answers research question 1.

4.2 Performance Results

In this subsection, we discuss the performance of ML complexity predictors. We
use the following evaluation metrics: accuracy, precision, recall, F1 score, FP rate,
and FN rate to compare the performances. At first, we generate confusion matrices
from the validation set. Table 3 visualizes the confusion matrices of the classifiers
for predicting software complexity.

We evaluate the techniques using following metrics: accuracy, precision, recall,
F1 score, FP and FN rate, and the results are visualized in Table 4. Accuracy and
precision are most used measurement in comparing the performance. Table 4 and
Fig. 5 shows the accuracy and precision value of the selected classifiers. The result
implies decision tree and random forest classifier have the highest accuracy and
precision than other classifiers. We also observe random forest has highest recall and
F1 score.

Table 3 Confusion matrices of classifiers for predicting software complexity
Classifier
names

Naive Bayes Logistic regression Decision tree Random forest Ada Boost

Predicted

Actual Low High Low High Low High Low High Low High

Low 6416 475 6766 125 6832 59 6820 71 6813 78

High 330 434 173 591 223 541 58 706 82 682



36 S. Moshin Reza et al.

Table 4 Prediction performance of machine learning models

Serial Classifier
name

Accuracy Precision Recall F1 score FP rate FN rate

1 Naive
Bayes

89 71 75 73 6.88 42.11

2 Logistic
regression

96 91 86 88 1.44 26.08

3 Decision
tree

98 95 96 96 0.90 7.53

4 Random
forest

98 95 99 97 1.00 1.95

5 Ada Boost 97 94 93 94 1.13 12.27

Fig. 5 Relative performance of ML classifiers

However, we evaluate the classifiers with another set of metrics: false positive
rate and false negative rate. The higher the FN rate, the model generates more false
alarms. This implies high complex classes are detected as low complex classes which
are very risky. Figure 6 shows the relative performance of classifiers in terms of false
positive rate and false negative rate. One may have to tolerate many false positives
to ensure reduced number of complex classes left undetected. As such, if the target
is to predict a larger percentage of high complexity class files, then Naive Bayes
classifier can be evaluated favorably although in overall prediction, random forest
and decision tree classifier’performance are better.

On the other hand, if the target is to predict a fewer percentage of high complex
files as low to avoid risk, then obviously random forest might be the good choice as it
has the lowest false negative rate. We focus more on false negative rate to reduce the
risk of detecting high complex class as low. RF results indicate that it is much better
model in prediction of complexity because of its bootstrapping random re-sample
technique and working with significant elements. On the other hand, DT is working
with all elements, and as a result, it creates more false alarms than RF. Therefore,
random forest is the best complexity predictor among selected ML techniques.



Performance Analysis of Machine Learning Approaches … 37

Fig. 6 Relative FP and FN rate of ML classifiers

5 Conclusion

In this study, we analyze the software source codemetrics which aremostly impacted
the class complexity. It is undoubtedly necessary to take proper action before classes
become more complex. Otherwise, it will become more expensive to test and fix if
large number of classes become highly complex. To reduce such risk and cost, it is
necessary to build complexity predictor.

We start with extracting 38,778 classes of dataset with 18 source code metrics,
we use five different machine learning approaches to train the dataset to classify
high or low complex classes. In evaluation, we compare the performance of the
approaches using the evaluation metrics. The result shows that RF classifier pre-
dicts high complexity classes with an accuracy of 98% and also having lowest FN
rate of 1.95. Therefore, random forest is considered as best classifier to detect class
complexity. In summary, we have made the following observation from our study.
First, cross-validation implies low variance of performance metrics detecting soft-
ware complexity. Second, FN rate needs to be reduced as much as possible to avoid
the risk of detecting high complex class as low complex class.

Finally, the observations and results from this study can be useful in software
quality research. Using ML automatic prediction on code quality will allow quality
managers, practitioners to take preventive actions against bad quality, faults, and
errors. Such proactive actions will allow software redesign and maintenance which
ensure better software quality during the development.

References

1. Alakus, T.B., Das, R., Turkoglu, I.: An overview of quality metrics used in estimating software
faults. In: 2019 International Artificial Intelligence and Data Processing Symposium (IDAP),
pp. 1–6. IEEE (2019)

2. Ogheneovo, E.E., et al.: On the relationship between software complexity and maintenance
costs. J. Comput. Commun. 2(14), 1 (2014)



38 S. Moshin Reza et al.

3. Yu, S., Zhou, S.: A survey on metric of software complexity. In: 2010 2nd IEEE International
Conference on Information Management and Engineering, pp. 352–356. IEEE (2010)

4. Reza, S.M., Rahman, M.M., Parvez, M.H., Shamim Kaiser, M., Mamun, S.A.: Innovative
approach in web application effort & cost estimation using functional measurement type. In:
2015 International Conference on Electrical Engineering and Information Communication
Technology (ICEEICT), pp. 1–7. IEEE (2015)

5. Durdik, Z., Klatt, B., Koziolek, H., Krogmann, K., Stammel, J., Weiss, R.: Sustainability
guidelines for long-living software systems. In: 2012 28th IEEE International Conference on
Software Maintenance (ICSM), pp. 517–526. IEEE (2012)

6. Reza, S.M., Rahman, M.M., Mamun, S.A.: A new approach for road networks-a vehicle xml
device collaborationwith big data. In: 2014 International Conference on Electrical Engineering
and Information & Communication Technology, pp. 1–5. IEEE (2014)

7. Bhattacharya, P., Iliofotou,M., Neamtiu, I., Faloutsos,M.: Graph-based analysis and prediction
for software evolution. In: 201234th InternationalConference onSoftwareEngineering (ICSE),
pp. 419–429. IEEE (2012)

8. Paul, M.C., Sarkar, S., Rahman, M.M., Reza, S.M., Shamim Kaiser, M.: Low cost and portable
patient monitoring system for e-health services in Bangladesh. In: 2016 International Confer-
ence on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2016)

9. Moreno-León, J., Robles, G., Román-González, M.: Comparing computational thinking devel-
opment assessment scoreswith software complexitymetrics. In: 2016 IEEEGlobalEngineering
Education Conference (EDUCON), pp. 1040–1045. IEEE (2016)

10. Singh, G., Singh, Dilbag, Singh, V.: A study of software metrics. IJCEM Int. J. Comput. Eng.
Manage. 11, 22–27 (2011)

11. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics as early
indicators of vulnerabilities. J. Syst. Arch. 57(3), 294–313 (2011)

12. Subramanyam, R., Krishnan, Mayuram S.: Empirical analysis of ck metrics for object-oriented
design complexity: implications for software defects. IEEE Trans. Softw. Eng. 29(4), 297–310
(2003)

13. Moshtari, S., Sami, A., Azimi, M.: Using complexity metrics to improve software security.
Comput. Fraud Sec. 2013(5), 8–17 (2013)

14. Rahman, S., Sharma, T., Reza, S.M., Rahman, M.M., Kaiser, M.S., et al.: Pso-nf based vertical
handoff decision for ubiquitous heterogeneous wireless network (uhwn). In: 2016 International
Workshop on Computational Intelligence (IWCI), pp. 153–158. IEEE (2016)

15. Briand, L.C., Wüst, J., Daly, J.W., Victor Porte, D.: Exploring the relationships between design
measures and software quality in object-oriented systems. J. Syst. Softw. 51(3), 245–273 (2000)

16. Gegick, M., Williams, L., Osborne, J., Vouk, M.: Prioritizing software security fortification
throughcode-level metrics. In: Proceedings of the 4th ACMworkshop on Quality of protection,
QoP ’08, pp. 31–38. Association for Computing Machinery, New York, NY, USA, Oct 2008

17. Munappy, A., Bosch, J., Olsson, H.H., Arpteg, A., Brinne, B.: Data management challenges for
deep learning. In: 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 140–147. IEEE (2019)

18. Reza, S.M., Badreddin, O., Rahad, K.: Modelmine: a tool to facilitate mining models from
open source repositories. In: 2020 ACM/IEEE 23rd International Conference onModel Driven
Engineering Languages and Systems (MODELS). ACM (2020)

19. Shaheen, A., Qamar, U., Nazir, A., Bibi, R., Ansar, M., Zafar, I.: Oocqm: object oriented code
quality meter. In: International Conference on Computational Science/Intelligence & Applied
Informatics, pp. 149–163. Springer (2019)

20. Zhang, Y., Lo, D., Xia, X., Xu, B., Sun, J., Li, S.: Combining software metrics and text
features for vulnerable file prediction. In: 2015 20th International Conference on Engineering
of Complex Computer Systems (ICECCS), pp. 40–49. IEEE (2015)

21. Jimenez,M.,Rwemalika,R., Papadakis,M., Sarro, F., Traon,Y.L.,Harman,M.:The importance
of accounting for real-world labellingwhen predicting software vulnerabilities. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 695–705 (2019)



Performance Analysis of Machine Learning Approaches … 39

22. Yadav, S., Shukla, S.: Analysis of k-fold cross-validation over hold-out validation on colossal
datasets for quality classification. In: 2016 IEEE 6th International Conference on Advanced
Computing (IACC), pp. 78–83. IEEE (2016)

23. Chowdhury, I., Zulkernine, M.: Can complexity, coupling, and cohesion metrics be used as
early indicators of vulnerabilities? In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1963–1969 (2010)


	 Performance Analysis of Machine Learning Approaches in Software Complexity Prediction
	1 Introduction
	2 Literature Review
	3 Research Methodology
	3.1 Research Questions
	3.2 Proposed Research Framework
	3.3 Dataset Collection
	3.4 Dataset Cleaning and Analysis
	3.5 Machine Learning Classifiers and Evaluation Metrics

	4 Result and Discussion
	4.1 Correlation Results
	4.2 Performance Results

	5 Conclusion
	References




